Expansion of A Theorem about Triangles

Kurashiki Amaki Senior High School Yusuke Kawai

1. Introduction

In math, theorems can be expanded.
Researches were done about the expanded Pythagorean theorem.
How does the cosine theorem apply in tetrahedrons?
2. Purpose

- To research about the cosine applied to tetrahedron
- To prove cosine theorem that compose on tetrahedron

3. Theory

cosine theorem in a triangle
\rightarrow relationship between two edges, an angle and the opposite edge

cosine theorem in tetrahedron
\rightarrow relationship between three areas, its angles, and the opposite area

$$
\Delta \mathrm{BCD}=\Delta \mathrm{HBC}+\Delta \mathrm{HCD}+\Delta \mathrm{HBD}
$$

$\Delta \mathrm{BCD}=\Delta \mathrm{ABC} \cos \theta_{4}+\Delta \mathrm{ACD} \cos \theta_{5}+\Delta \mathrm{ABD} \cos \theta_{6}$

$$
\begin{gathered}
\Delta \mathrm{ABC}=\Delta \mathrm{ABD} \cos \theta_{3}+\Delta \mathrm{ACD} \cos \theta_{1}+\Delta \mathrm{BCD} \cos \theta_{4} \\
\Delta \mathrm{ACD}=\Delta \mathrm{ABC} \cos \theta_{1}+\Delta \mathrm{ABD} \cos \theta_{2}+\Delta \mathrm{BCD} \cos \theta_{5} \\
\Delta \mathrm{ABD}=\Delta \mathrm{ABC} \cos \theta_{3}+\Delta \mathrm{ABD} \cos \theta_{2}+\Delta \mathrm{BCD} \cos \theta_{6} \\
\Delta \mathrm{ABC}=S_{1}, \Delta \mathrm{ABD}=S_{2}, \Delta \mathrm{ACD}=S_{3}, \Delta \mathrm{BCD}=S_{4} \\
S_{4}=S_{1} \cos \theta_{4}+S_{2} \cos \theta_{5}+S_{3} \cos \theta_{6} \\
S_{1}=S_{2} \cos \theta_{3}+S_{3} \cos \theta_{1}+S_{4} \cos \theta_{4} \\
\Leftrightarrow \cos \theta_{4}=\frac{1}{S_{4}}\left(S_{1}-S_{2} \cos \theta_{3}-S_{3} \cos \theta_{1}\right) \\
S_{2}=S_{1} \cos \theta_{1}+S_{3} \cos \theta_{2}+S_{4} \cos \theta_{5} \\
\Leftrightarrow \cos \theta_{5}=\frac{1}{S_{5}}\left(S_{2}-S_{1} \cos \theta_{1}-S_{3} \cos \theta_{2}\right) \\
S_{3}=S_{1} \cos \theta_{3}+S_{3} \cos \theta_{2}+S_{4} \cos \theta_{6} \\
\Leftrightarrow \cos \theta_{6}=\frac{1}{S_{6}}\left(S_{3}-S_{1} \cos \theta_{3}-S_{3} \cos \theta_{2}\right) \\
S_{4}^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2} \\
-2 S_{1} S_{2} \cos \theta_{1}-2 S_{2} S_{3} \cos \theta_{2}-2 S_{3} S_{1} \cos \theta_{3}
\end{gathered}
$$

5. Conclusion

- The expansion of the cosine theorem is expressed by
$S_{4}^{2}=S_{1}^{2}+S_{2}^{2}+S_{3}^{2}$
$-2 S_{1} S_{2} \cos \theta_{1}-2 S_{2} S_{3} \cos \theta_{2}-2 S_{3} S_{1} \cos \theta_{3}$.

6. Future Research

- To research about the tetrahedron that has an orthocenter in it
- To research how the cosine theorem become in n-dimension

